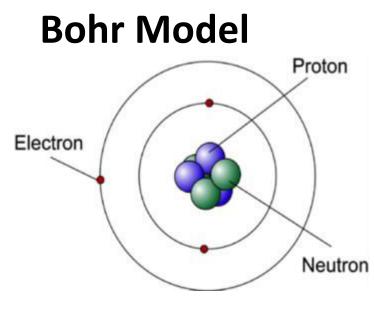

STRUCTURE OF ATOM



Seema Saini Principal G.S.C Naya Nangal

Structure Of Atom

Introduction : Atom consists of three subatomic particles : electrons, protons and neutrons. These particles are regarded as fundamental particles.

- Electron revolve in a fixed circular path called orbit
 As long as it remains in the fixed orbit it does not gain or lose energy
- Angular momentum of the orbit is quantized have a fixed value i.e. whole no multiple of h/2π

Objection:

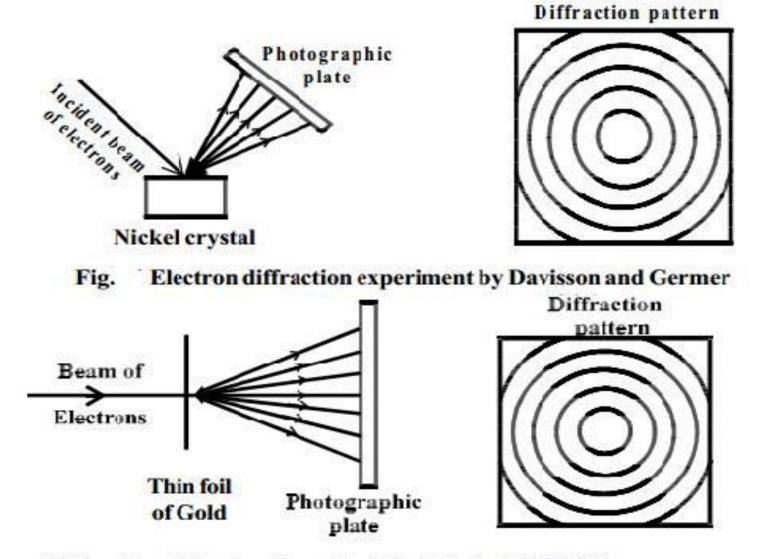
De Broglie & Heisenberg uncertainty : Concept of wave character of electron in addition to particle and pointed out that the motion of electron cannot be fixed or well defined. This lead to a new approach which is known as **wave mechanics or quantum mechanics.**

De Broglie Concept of matter waves:

Einstein in 1905 gave dual behaviour of **light** *Particle like character:* black body radiation, photoelectric effect

Wave like character: reflection, refraction, dispersion, interference.

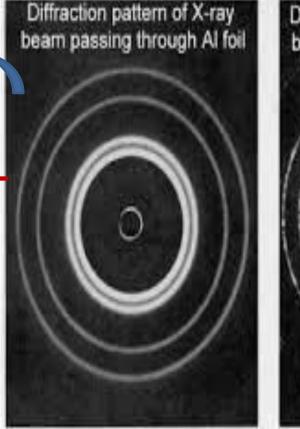
De Broglie in 1924 contradicted Bohr statement,. He suggested that just as light, all microscopic particles also exhibit dual behavior


Acc to De Broglie $\lambda = h/mv \text{ or } \lambda = h/p$ **Derivation of de Broglie Relation**

Acc to Planck's $E = hv \dots (i)$ Acc to Einstein $E=mc^2....(ii)$ From eq. 1 and 2 $hv = mc^2$ $v = c/\lambda$ $hc/\lambda = mc^2$ $\lambda = h/mc \text{ or } \lambda = h/p$

Justification of Dual Nature

- Particle nature: Electrons exhibit charactertics of particle i.e. they have mass, momentum , energy and charge.
- Wave nature was experimentally verified by Germer and Davidson in1927 and George Thomas in 1928


Experimental verification of wave nature of experiment :



Diffraction of electron beam by thin foil of gold (G.P. Thomson experiment)

Experimental verification of wave nature of experiment :

Diffraction pattern of Xrays

Diffraction pattern of electrons

Estimation of de-Broglie wavelength

Assume that an electron having charge e is accelerated by a potential V.

The K.E. of the electron becomes Ve.

Substituting this value in the relation: K.E. = $\frac{1}{2}$ mv², we get

$$1/2 \text{ mv}^2 = \text{eV}$$

 $v = (2eV/m)^{1/2}$ Substituting this value of v, in de-Broglie's equation

 $\lambda = h/mv$

 $\lambda = h/m(2eV/m)^{1/2}$ or $\lambda = h/(2Vem)^{1/2}$

Substituting the values of
$$h = 6.626 \times 10^{-34} \text{ kg m}^2 \text{s}^{-1}$$
,
 $\lambda = 1.226 \times 10^{-9} / (\text{V})^{1/2}$
 $h = 6.626 \times 10^{-34} \text{ kg m}^2 \text{s}^{-1}$,
 $e = 1.02 \times 10^{-9} \text{C}$,
 $m = 9.11 \times 10^{-31} \text{ kg}$

If the electron is accelerated by a V= 1kV (1000V) ,then $\lambda = 1.226 \text{ x } 10^{-9} / (1000)^{1/2} = 3.88 \text{ x } 10^{-11} \text{ m} = 38.8 \text{ pm}$ This is comparable to normal bond length of molecule. So e⁻ accelerated in this manner can be used in X-ray diffraction

Differences between Electromagnetic and Matter Waves

S.No.	Electromagnetic Waves	Matter Waves
1	Associated with electrical and magnetic fields.	Not associated with electrical and magnetic fields.
2	Can be emitted or radiated in space.	Neither radiated into space nor emitted by the particles. These are simply associated with the particles.
3	They do not require medium for propagation	They require medium for propagation.
4	Travel with the same velocity.	Travel with different velocities.
5	Velocity is equal to that of the velocity of light i.e. 3 x 10 ⁸ ms ⁻¹ .	Velocity is different from that of light.
6.	The wavelength is given by $\lambda = c/v$, $v =$ frequency	The wavelength is given by $\lambda = h/mv = h/p$. $v = velocity$