

Structure Of Atom

Seema Saini Principal G.S.C Naya Nangal

De Broglie Concept of matter waves

- Einstein in 1905 gave dual behaviour of light
- Particle: black body radiation, photoelectric effect
- Wave: reflection, refraction, dispersion, interference.
- De Broglie in 1924 contradicted Bohr statement. He suggested that just as light all microscopic particles also exhibit dual behavior.

Acc. to De Broglie

 $\lambda = h/mv \text{ or } \lambda = h/p$

Acc to Plancks

 $\mathbf{E} = \mathbf{h} \mathbf{v} \dots \dots \dots \mathbf{(i)}$

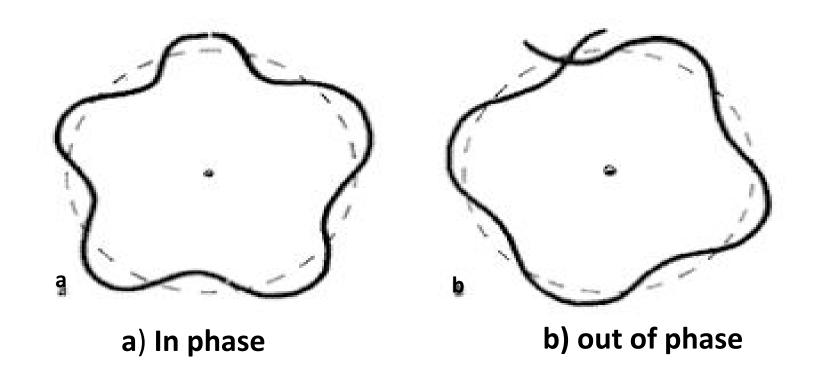
Acc to Einstein

 $E = mc^2$ (ii)

From eq. (i) and (ii)

 $hv = mc^{2}....(iii)$ But $v = c/\lambda$ Substituting the value of v in equation....(iii), $hc/\lambda = mc^{2}$

 $\lambda = h/mc \text{ or } \lambda = h/p$


Justification of Dual Nature

- 1. Particle nature: Electrons exhibit characteristics of particle i.e. they have mass, momentum , energy and charge.
- Wave nature was experimentally verified by Germer and Davidson in1927 and George Thomas in 1928

WAVE NATURE OF ELECTRON AND QUANTISATION OF ANGULAR MOMENTUM :

- de Broglie was able to explain correctly the concept of angular momentum given by Bohr.
- Acc.to Bohr, the angular momentum of an electron in a particular orbital is quantized and is an integral multiple of $(nh / 2\pi)$
- Acc. to de Broglie, electron has both wave and particle like character.
- The electron moves around the nucleus in the form of wave in a circular orbit of radius 'r'

- The movement of electrons in the form of wave can be of two types:
- i. In phase : stationary or standing wave
- ii. Out of phase: non-stationary wave

• For a wave to be completely in phase, the circumference of the orbit must be an integral multiple of the wavelength ' λ '

Circumference = $n\lambda$ $2\pi r = n\lambda$ (i) $\lambda = h/mv$ (de Broglie) Substituting the value of λ in equation (i),

 $2\pi r = nh/mv$

 $mvr = nh/2\pi$ where mvr = angular momentum

Significance of de Broglie relationship :

- Dual nature of matter is significant only for microscopic objects.
- For larger bodies wavelength associated is small and cannot be measured.
- The wavelength of an electron can be calculated by $\lambda = h/mv$ $= \frac{6.63 \times 10^{-34} \text{ kg m}^2 \text{ s}^{-1}}{9.11 \times 10^{-31} \text{ kg x}(10^6 \text{ ms}^{-1})}$

= 7.28 x 10⁻¹⁰ m (same as x-ray)

• The wavelength associated with ball(10g) can be calculated by the similar way

 $\lambda = h/mv$

$$= \frac{6.63 \text{ x } 10^{-34} \text{ kg } \text{m}^2 \text{ s}^{-1}}{10 \text{ x } 10^{-3} \text{ kg } \text{x} (10^6 \text{ ms}^{-1})}$$

 $= 6.63 \times 10^{-38} \text{m}$

• This wavelength is shorter than any known wavelength and cannot be measured.

Q1. Calculate de Broglie wavelength of an electron of mass (9.11 x 10⁻³¹ kg) moving at 1% of speed of light (h= 6.63 x 10⁻³⁴ kg m² s⁻¹

Ans:

 $\lambda = h/mv$ h = 6.63 x 10⁻³⁴ kg m² s⁻¹ m = 9.11 x 10⁻³¹ kg v= 1% speed of light = 1 x3x 10⁸/100 ms⁻¹= 3 x 10⁶ ms⁻¹ = $\frac{6.63 \times 10^{-34} \text{ kg m}^2 \text{ s}^{-1}}{9.11 \times 10^{-31} \text{ kg x}(3 \times 10^6 \text{ ms}^{-1})} = 2.43 \times 10^{-10} \text{ m} (243 \text{ pm})$ Calculate de Broglie wavelength of an electron that has been accelerated from rest through a potential difference of 1kV.

Ans:

 $e = 1.6 \times 10^{-19} C$, $V = 10^{3} V$, $m = 9.11 \times 10^{-31} kg$

 $\frac{1}{2} \text{ mv}^2 = \text{eV}$ $\frac{1}{2} \times 9.11 \times 10^{-31} \text{ kg x v}^2 = 1.6 \times 10^{-19} \text{ C} \times 10^3 \text{ V}$

v = 0.188 x 10⁸ ms⁻¹

 $\lambda = h/mv$

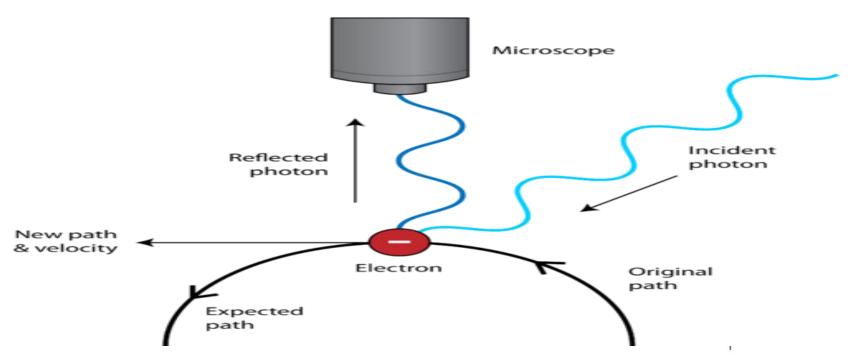
 $= \frac{6.63 \times 10^{-34} \text{ kg m}^2 \text{ s}^{-1}}{9.11 \times 10^{-31} \text{ kg x} (0.188 \times 10^8 \text{ ms}^{-1})} = 3.85 \times 10^{-11} \text{ m}$

HEISENBERG'S UNCERTAINTY PRINCIPLE:

It is not possible to define both position and velocity (or momentum) of a microscopic particle with absolute accuracy or certainty.

Mathematically, $\Delta x \propto \Delta p \ge h/4\pi$ where Δx is uncertainty in position ; Δp is uncertainty in momentum of a particle.

CASES


i) $\Delta x = is$ small, i.e., position of the particle is measured accurately

 Δp would be large i.e., there would be large uncertainty in the momentum.

ii) $\Delta p = is small$, i.e., momentum od particle is measured accurately Δx would be large i.e., there would be large uncertainty in the position.

Physical concept of uncertainty

- In order to determine the position of an object, we have to see the object.
- When beam of light falls on the object photon of incident light are scattered and the reflected light enter our eye.

- To locate an electron, you might strike it with a photon.
- The electron has such a small mass that striking it with a photon affects its motion in a way that cannot be predicted accurately.
- The very act of measuring the position of the electron changes its momentum, making its momentum uncertain.

Why electron cannot remain inside nucleus?

Atomic radii of nucleus is 10⁻¹⁵ m

 $\Delta x = 10^{-15} \, \mathrm{m}$

Now, according to uncertainity principle,

$$\Delta x \times \Delta p = \frac{h}{4\pi}$$
$$\Delta x \times m\Delta V = \frac{h}{4\pi}$$
$$\Delta V = \frac{h}{4\pi}$$

Mass of electron,

1 a.

$$m = 9.1 \times 10^{-31} \text{ kg,}$$

$$\Delta x = 1 \times 10^{-15} \text{ m}$$

$$\Delta V = \frac{6.6 \times 10^{-34}}{4 \times 3.14 \times 9.1 \times 10^{-31} \times 1 \times 10^{-15}}$$

 $= 5.77 \times 10^{10} \text{ ms}^{-1}$ 1

Т

- 80

The value of uncertainity in velocity, ΔV is much higher than the velocity of light (3.0 \times 10⁸ ms⁻¹) and hence an electron cannot be found within the atomic nucleus. The mass of an electron is 9.11 x 10^{-31} kg. Calculate the uncertainty in its velocity if the uncertainty in its position is of the order of ± 10 pm

Ans:

 $\Delta x = 10pm = 10 \times 10^{-12} = 10^{-11} m$ m = 9.11 x 10⁻³¹ kg $\Delta P = ?$ $\Delta x \propto \Delta p \ge h/4\pi$ $\Delta x \propto \Delta mv \ge h/4\pi$

 $\Delta v = \frac{6.6 \times 10^{-34} \text{ kg m}^2 \text{ s}^{-1}}{4 \times 3.14 \times 9.11 \times 10^{-31} \text{ kg x } 10^{-11} \text{ m}}$

= 5.76 x 10⁶ ms⁻¹

Calculate the uncertainty in the position of an electron if uncertainty in its velocity is (i) .001% (ii) zero (the velocity of e= 300m/s) Ans: Δv = .001% = 0.001 x 300/100 = 3 x 10⁻³ m/s

(i) $\Delta x \ge \frac{\Delta p \ge h/4\pi}{\Delta x}$ $\Delta x = \frac{6.6 \times 10^{-34} \text{ kg m}^2 \text{ s}^{-1}}{4 \times 3.14 \times 9.11 \times 10^{-31} \text{ kg x } 3 \times 10^{-3} \text{ m}} = 1.92 \times 10^{-2} \text{ m/s}$

(ii) $\Delta x \ge h/4\pi$

 $\Delta \mathbf{v} = \mathbf{0}$

 $\Delta x \ge h/4\pi$, $\Delta x \ge h/4\pi = h/4\pi dv$

= as denominator becomes zero and the uncertainty in position is infinity.